Inertial mass and the quantum vacuum fields

نویسندگان

  • Bernard Haisch
  • Alfonso Rueda
چکیده

Even when the Higgs particle is finally detected, it will continue to be a legitimate question to ask whether the inertia of matter as a reaction force opposing acceleration is an intrinsic or extrinsic property of matter. General relativity specifies which geodesic path a free particle will follow, but geometrodynamics has no mechanism for generating a reaction force for deviation from geodesic motion. We discuss a different approach involving the electromagnetic zero-point field (ZPF) of the quantum vacuum. It has been found that certain asymmetries arise in the ZPF as perceived from an accelerating reference frame. In such a frame the Poynting vector and momentum flux of the ZPF become non-zero. Scattering of this quantum radiation by the quarks and electrons in matter can result in an acceleration-dependent reaction force. Both the ordinary and the relativistic forms of Newton’s second law, the equation of motion, can be derived from the electrodynamics of such ZPF-particle interactions. Conjectural arguments are given why this interaction should take place in a resonance at the Compton frequency, and how this could simultaneously provide a physical basis for the de Broglie wavelength of a moving particle. This affords a suggestive perspective on a deep connection between electrodynamics, the origin of inertia and the quantum wave nature of matter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravity and the quantum vacuum inertia hypothesis

In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero-point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be ...

متن کامل

Inertial Mechanism: Dynamical Mass as a Source of Particle Creation

A kinetic theory of vacuum particle creation under the action of an inertial mechanism is constructed within a nonpertrubative dynamical approach. At the semi-phenomenological level, the inertial mechanism corresponds to quantum field theory with a time-dependent mass. At the microscopic level, such a dependence may be caused by different reasons: The non-stationary Higgs mechanism, the influen...

متن کامل

The Abdus Salam International Centre for Theoretical Physics the Vacuum Structure, Special Relativity Theory and Quantum Mechanics Revisited: a Field Theory-no-geometry Approach

The main fundamental principles characterizing the vacuum field structure are formulated, the modeling of the related vacuum medium and charged point particle dynamics by means of devised field theoretic tools are analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles, the classical special relativity theory relationship b...

متن کامل

Geometrodynamics, Inertia and the Quantum Vacuum

Why does F equal ma in Newton's equation of motion? How does a gravitational field produce a force? Why are inertial mass and gravitational mass the same? It appears that all three of these seemingly axiomatic foundational questions have an answer involving an identical physical process: interaction between the electromagnetic quantum vacuum and the fundamental charged particles (quarks and ele...

متن کامل

Gravity and the Quantum Vacuum Inertia Hypothesis I. Formalized Groundwork for Extension to Gravity

It has been shown [1,2] that the electromagnetic quantum vacuum makes a contribution to the inertial mass, mi, in the sense that at least part of the inertial force of opposition to acceleration, or inertia reaction force, springs from the electromagnetic quantum vacuum (see also [3] for an earlier attempt). Specifically, in the previously cited work, the properties of the electromagnetic quant...

متن کامل

Inertial Mass and Vacuum Fluctuations in Quantum Field Theory

Motivated by recent works on the origin of inertial mass, we revisit the relationship between the mass of charged particles and zero-point electromagnetic fields. To this end we first introduce a simple model comprising a scalar field coupled to stochastic or thermal electromagnetic fields. Then we check if it is possible to start from a zero bare mass in the renormalization process and express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001